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ABSTRACT

The C programming language was devised in the early 1970s as a system
implementation language for the nascent Unix operating system. Derived from
the typeless language BCPL, it evolved a type structure; created on a tiny
machine as a tool to improve a meager programming environment, it has become
one of the dominant languages of today. This paper studies its evolution.

Introduction
This paper is about the development of the C programming language, the influences on it, and the
conditions under which it was created. For the sake of brevity, I omit full descriptions of C itself,
its parent B [Johnson 73] and its grandparent BCPL [Richards 79], and instead concentrate on
characteristic elements of each language and how they evolved.

C came into being in the years 1969-1973, in parallel with the early development of the
Unix operating system; the most creative period occurred during 1972. Another spate of changes
peaked between 1977 and 1979, when portability of the Unix system was being demonstrated. In
the middle of this second period, the first widely available description of the language appeared:
The C Programming Language, often called the ‘white book’ or ‘K&R’ [Kernighan 78]. Finally,
in the middle 1980s, the language was officially standardized by the ANSI X3J11 committee,
which made further changes. Until the early 1980s, although compilers existed for a variety of
machine architectures and operating systems, the language was almost exclusively associated
with Unix; more recently, its use has spread much more widely, and today it is among the lan-
guages most commonly used throughout the computer industry.

History: the setting
The late 1960s were a turbulent era for computer systems research at Bell Telephone Labo-

ratories [Ritchie 78] [Ritchie 84]. The company was pulling out of the Multics project [Organick
75], which had started as a joint venture of MIT, General Electric, and Bell Labs; by 1969, Bell
Labs management, and even the researchers, came to believe that the promises of Multics could
be fulfilled only too late and too expensively. Even before the GE-645 Multics machine was
removed from the premises, an informal group, led primarily by Ken Thompson, had begun
investigating alternatives.

Thompson wanted to create a comfortable computing environment constructed according to
his own design, using whatever means were available. His plans, it is evident in retrospect,
________________
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incorporated many of the innovative aspects of Multics, including an explicit notion of a process
as a locus of control, a tree-structured file system, a command interpreter as user-level program,
simple representation of text files, and generalized access to devices. They excluded others, such
as unified access to memory and to files. At the start, moreover, he and the rest of us deferred
another pioneering (though not original) element of Multics, namely writing almost exclusively in
a higher-level language. PL/I, the implementation language of Multics, was not much to our
tastes, but we were also using other languages, including BCPL, and we regretted losing the
advantages of writing programs in a language above the level of assembler, such as ease of writ-
ing and clarity of understanding. At the time we did not put much weight on portability; interest
in this arose later.

Thompson was faced with a hardware environment cramped and spartan even for the time:
the DEC PDP-7 on which he started in 1968 was a machine with 8K 18-bit words of memory and
no software useful to him. While wanting to use a higher-level language, he wrote the original
Unix system in PDP-7 assembler. At the start, he did not even program on the PDP-7 itself, but
instead used a set of macros for the GEMAP assembler on a GE-635 machine. A postprocessor
generated a paper tape readable by the PDP-7.

These tapes were carried from the GE machine to the PDP-7 for testing until a primitive
Unix kernel, an editor, an assembler, a simple shell (command interpreter), and a few utilities
(like the Unix rm, cat, cp commands) were completed. After this point, the operating system was
self-supporting: programs could be written and tested without resort to paper tape, and develop-
ment continued on the PDP-7 itself.

Thompson’s PDP-7 assembler outdid even DEC’s in simplicity; it evaluated expressions
and emitted the corresponding bits. There were no libraries, no loader or link editor: the entire
source of a program was presented to the assembler, and the output file—with a fixed name—that
emerged was directly executable. (This name, a.out, explains a bit of Unix etymology; it is the
output of the assembler. Even after the system gained a linker and a means of specifying another
name explicitly, it was retained as the default executable result of a compilation.)

Not long after Unix first ran on the PDP-7, in 1969, Doug McIlroy created the new system’s
first higher-level language: an implementation of McClure’s TMG [McClure 65]. TMG is a lan-
guage for writing compilers (more generally, TransMoGrifiers) in a top-down, recursive-descent
style that combines context-free syntax notation with procedural elements. McIlroy and Bob
Morris had used TMG to write the early PL/I compiler for Multics.

Challenged by McIlroy’s feat in reproducing TMG, Thompson decided that Unix—possibly
it had not even been named yet—needed a system programming language. After a rapidly scut-
tled attempt at Fortran, he created instead a language of his own, which he called B. B can be
thought of as C without types; more accurately, it is BCPL squeezed into 8K bytes of memory
and filtered through Thompson’s brain. Its name most probably represents a contraction of
BCPL, though an alternate theory holds that it derives from Bon [Thompson 69], an unrelated
language created by Thompson during the Multics days. Bon in turn was named either after his
wife Bonnie, or (according to an encyclopedia quotation in its manual), after a religion whose rit-
uals involve the murmuring of magic formulas.

Origins: the languages
BCPL was designed by Martin Richards in the mid-1960s while he was visiting MIT, and

was used during the early 1970s for several interesting projects, among them the OS6 operating
system at Oxford [Stoy 72], and parts of the seminal Alto work at Xerox PARC [Thacker 79].
We became familiar with it because the MIT CTSS system [Corbato 62] on which Richards
worked was used for Multics development. The original BCPL compiler was transported both to
Multics and to the GE-635 GECOS system by Rudd Canaday and others at Bell Labs [Canaday
69]; during the final throes of Multics’s life at Bell Labs and immediately after, it was the lan-
guage of choice among the group of people who would later become involved with Unix.

BCPL, B, and C all fit firmly in the traditional procedural family typified by Fortran and
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Algol 60. They are particularly oriented towards system programming, are small and compactly
described, and are amenable to translation by simple compilers. They are ‘close to the machine’
in that the abstractions they introduce are readily grounded in the concrete data types and opera-
tions supplied by conventional computers, and they rely on library routines for input-output and
other interactions with an operating system. With less success, they also use library procedures to
specify interesting control constructs such as coroutines and procedure closures. At the same
time, their abstractions lie at a sufficiently high level that, with care, portability between
machines can be achieved.

BCPL, B and C differ syntactically in many details, but broadly they are similar. Programs
consist of a sequence of global declarations and function (procedure) declarations. Procedures
can be nested in BCPL, but may not refer to non-static objects defined in containing procedures.
B and C avoid this restriction by imposing a more severe one: no nested procedures at all. Each
of the languages (except for earliest versions of B) recognizes separate compilation, and provides
a means for including text from named files.

Several syntactic and lexical mechanisms of BCPL are more elegant and regular than those
of B and C. For example, BCPL’s procedure and data declarations have a more uniform struc-
ture, and it supplies a more complete set of looping constructs. Although BCPL programs are
notionally supplied from an undelimited stream of characters, clever rules allow most semicolons
to be elided after statements that end on a line boundary. B and C omit this convenience, and end
most statements with semicolons. In spite of the differences, most of the statements and opera-
tors of BCPL map directly into corresponding B and C.

Some of the structural differences between BCPL and B stemmed from limitations on inter-
mediate memory. For example, BCPL declarations may take the form

let P1 be command
and P2 be command
and P3 be command
...

where the program text represented by the commands contains whole procedures. The subdecla-
rations connected by and occur simultaneously, so the name P3 is known inside procedure P1.
Similarly, BCPL can package a group of declarations and statements into an expression that
yields a value, for example

E1 := valof $( declarations ; commands ; resultis E2 $) + 1

The BCPL compiler readily handled such constructs by storing and analyzing a parsed representa-
tion of the entire program in memory before producing output. Storage limitations on the B com-
piler demanded a one-pass technique in which output was generated as soon as possible, and the
syntactic redesign that made this possible was carried forward into C.

Certain less pleasant aspects of BCPL owed to its own technological problems and were
consciously avoided in the design of B. For example, BCPL uses a ‘global vector’ mechanism
for communicating between separately compiled programs. In this scheme, the programmer
explicitly associates the name of each externally visible procedure and data object with a numeric
offset in the global vector; the linkage is accomplished in the compiled code by using these
numeric offsets. B evaded this inconvenience initially by insisting that the entire program be pre-
sented all at once to the compiler. Later implementations of B, and all those of C, use a conven-
tional linker to resolve external names occurring in files compiled separately, instead of placing
the burden of assigning offsets on the programmer.

Other fiddles in the transition from BCPL to B were introduced as a matter of taste, and
some remain controversial, for example the decision to use the single character = for assignment
instead of :=. Similarly, B uses /* */ to enclose comments, where BCPL uses //, to ignore
text up to the end of the line. The legacy of PL/I is evident here. (C++ has resurrected the BCPL
comment convention.) Fortran influenced the syntax of declarations: B declarations begin with a
specifier like auto or static, followed by a list of names, and C not only followed this style
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but ornamented it by placing its type keywords at the start of declarations.

Not every difference between the BCPL language documented in Richards’s book [Richards
79] and B was deliberate; we started from an earlier version of BCPL [Richards 67]. For exam-
ple, the endcase that escapes from a BCPL switchon statement was not present in the lan-
guage when we learned it in the 1960s, and so the overloading of the break keyword to escape
from the B and C switch statement owes to divergent evolution rather than conscious change.

In contrast to the pervasive syntax variation that occurred during the creation of B, the core
semantic content of BCPL—its type structure and expression evaluation rules—remained intact.
Both languages are typeless, or rather have a single data type, the ‘word,’ or ‘cell,’ a fixed-length
bit pattern. Memory in these languages consists of a linear array of such cells, and the meaning
of the contents of a cell depends on the operation applied. The + operator, for example, simply
adds its operands using the machine’s integer add instruction, and the other arithmetic operations
are equally unconscious of the actual meaning of their operands. Because memory is a linear
array, it is possible to interpret the value in a cell as an index in this array, and BCPL supplies an
operator for this purpose. In the original language it was spelled rv, and later !, while B uses the
unary *. Thus, if p is a cell containing the index of (or address of, or pointer to) another cell, *p
refers to the contents of the pointed-to cell, either as a value in an expression or as the target of an
assignment.

Because pointers in BCPL and B are merely integer indices in the memory array, arithmetic
on them is meaningful: if p is the address of a cell, then p+1 is the address of the next cell. This
convention is the basis for the semantics of arrays in both languages. When in BCPL one writes

let V = vec 10

or in B,

auto V[10];

the effect is the same: a cell named V is allocated, then another group of 10 contiguous cells is set
aside, and the memory index of the first of these is placed into V. By a general rule, in B the
expression

*(V+i)

adds V and i, and refers to the i-th location after V. Both BCPL and B each add special notation
to sweeten such array accesses; in B an equivalent expression is

V[i]

and in BCPL

V!i

This approach to arrays was unusual even at the time; C would later assimilate it in an even less
conventional way.

None of BCPL, B, or C supports character data strongly in the language; each treats strings
much like vectors of integers and supplements general rules by a few conventions. In both BCPL
and B a string literal denotes the address of a static area initialized with the characters of the
string, packed into cells. In BCPL, the first packed byte contains the number of characters in the
string; in B, there is no count and strings are terminated by a special character, which B spelled
‘*e’. This change was made partially to avoid the limitation on the length of a string caused by
holding the count in an 8- or 9-bit slot, and partly because maintaining the count seemed, in our
experience, less convenient than using a terminator.

Individual characters in a BCPL string were usually manipulated by spreading the string out
into another array, one character per cell, and then repacking it later; B provided corresponding
routines, but people more often used other library functions that accessed or replaced individual
characters in a string.
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More History
After the TMG version of B was working, Thompson rewrote B in itself (a bootstrapping

step). During development, he continually struggled against memory limitations: each language
addition inflated the compiler so it could barely fit, but each rewrite taking advantage of the fea-
ture reduced its size. For example, B introduced generalized assignment operators, using x=+y
to add y to x. The notation came from Algol 68 [Wijngaarden 75] via McIlroy, who had incorpo-
rated it into his version of TMG. (In B and early C, the operator was spelled =+ instead of += ;
this mistake, repaired in 1976, was induced by a seductively easy way of handling the first form
in B’s lexical analyzer.)

Thompson went a step further by inventing the ++ and -- operators, which increment or
decrement; their prefix or postfix position determines whether the alteration occurs before or after
noting the value of the operand. They were not in the earliest versions of B, but appeared along
the way. People often guess that they were created to use the auto-increment and auto-decrement
address modes provided by the DEC PDP-11 on which C and Unix first became popular. This is
historically impossible, since there was no PDP-11 when B was developed. The PDP-7, however,
did have a few ‘auto-increment’ memory cells, with the property that an indirect memory refer-
ence through them incremented the cell. This feature probably suggested such operators to
Thompson; the generalization to make them both prefix and postfix was his own. Indeed, the
auto-increment cells were not used directly in implementation of the operators, and a stronger
motivation for the innovation was probably his observation that the translation of ++x was
smaller than that of x=x+1.

The B compiler on the PDP-7 did not generate machine instructions, but instead ‘threaded
code’ [Bell 72], an interpretive scheme in which the compiler’s output consists of a sequence of
addresses of code fragments that perform the elementary operations. The operations typically—in
particular for B—act on a simple stack machine.

On the PDP-7 Unix system, only a few things were written in B except B itself, because the
machine was too small and too slow to do more than experiment; rewriting the operating system
and the utilities wholly into B was too expensive a step to seem feasible. At some point Thomp-
son relieved the address-space crunch by offering a ‘virtual B’ compiler that allowed the inter-
preted program to occupy more than 8K bytes by paging the code and data within the interpreter,
but it was too slow to be practical for the common utilities. Still, some utilities written in B
appeared, including an early version of the variable-precision calculator dc familiar to Unix users
[McIlroy 79]. The most ambitious enterprise I undertook was a genuine cross-compiler that
translated B to GE-635 machine instructions, not threaded code. It was a small tour de force: a
full B compiler, written in its own language and generating code for a 36-bit mainframe, that ran
on an 18-bit machine with 4K words of user address space. This project was possible only
because of the simplicity of the B language and its run-time system.

Although we entertained occasional thoughts about implementing one of the major lan-
guages of the time like Fortran, PL/I, or Algol 68, such a project seemed hopelessly large for our
resources: much simpler and smaller tools were called for. All these languages influenced our
work, but it was more fun to do things on our own.

By 1970, the Unix project had shown enough promise that we were able to acquire the new
DEC PDP-11. The processor was among the first of its line delivered by DEC, and three months
passed before its disk arrived. Making B programs run on it using the threaded technique
required only writing the code fragments for the operators, and a simple assembler which I coded
in B; soon, dc became the first interesting program to be tested, before any operating system, on
our PDP-11. Almost as rapidly, still waiting for the disk, Thompson recoded the Unix kernel and
some basic commands in PDP-11 assembly language. Of the 24K bytes of memory on the
machine, the earliest PDP-11 Unix system used 12K bytes for the operating system, a tiny space
for user programs, and the remainder as a RAM disk. This version was only for testing, not for
real work; the machine marked time by enumerating closed knight’s tours on chess boards of var-
ious sizes. Once its disk appeared, we quickly migrated to it after transliterating assembly-
language commands to the PDP-11 dialect, and porting those already in B.
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By 1971, our miniature computer center was beginning to have users. We all wanted to cre-
ate interesting software more easily. Using assembler was dreary enough that B, despite its per-
formance problems, had been supplemented by a small library of useful service routines and was
being used for more and more new programs. Among the more notable results of this period was
Steve Johnson’s first version of the yacc parser-generator [Johnson 79a].

The Problems of B
The machines on which we first used BCPL and then B were word-addressed, and these lan-

guages’ single data type, the ‘cell,’ comfortably equated with the hardware machine word. The
advent of the PDP-11 exposed several inadequacies of B’s semantic model. First, its character-
handling mechanisms, inherited with few changes from BCPL, were clumsy: using library proce-
dures to spread packed strings into individual cells and then repack, or to access and replace indi-
vidual characters, began to feel awkward, even silly, on a byte-oriented machine.

Second, although the original PDP-11 did not provide for floating-point arithmetic, the
manufacturer promised that it would soon be available. Floating-point operations had been added
to BCPL in our Multics and GCOS compilers by defining special operators, but the mechanism
was possible only because on the relevant machines, a single word was large enough to contain a
floating-point number; this was not true on the 16-bit PDP-11.

Finally, the B and BCPL model implied overhead in dealing with pointers: the language
rules, by defining a pointer as an index in an array of words, forced pointers to be represented as
word indices. Each pointer reference generated a run-time scale conversion from the pointer to
the byte address expected by the hardware.

For all these reasons, it seemed that a typing scheme was necessary to cope with characters
and byte addressing, and to prepare for the coming floating-point hardware. Other issues, particu-
larly type safety and interface checking, did not seem as important then as they became later.

Aside from the problems with the language itself, the B compiler’s threaded-code technique
yielded programs so much slower than their assembly-language counterparts that we discounted
the possibility of recoding the operating system or its central utilities in B.

In 1971 I began to extend the B language by adding a character type and also rewrote its
compiler to generate PDP-11 machine instructions instead of threaded code. Thus the transition
from B to C was contemporaneous with the creation of a compiler capable of producing programs
fast and small enough to compete with assembly language. I called the slightly-extended lan-
guage NB, for ‘new B.’

Embryonic C
NB existed so briefly that no full description of it was written. It supplied the types int

and char, arrays of them, and pointers to them, declared in a style typified by

int i, j;
char c, d;
int iarray[10];
int ipointer[];
char carray[10];
char cpointer[];

The semantics of arrays remained exactly as in B and BCPL: the declarations of iarray and
carray create cells dynamically initialized with a value pointing to the first of a sequence of 10
integers and characters respectively. The declarations for ipointer and cpointer omit the
size, to assert that no storage should be allocated automatically. Within procedures, the
language’s interpretation of the pointers was identical to that of the array variables: a pointer dec-
laration created a cell differing from an array declaration only in that the programmer was
expected to assign a referent, instead of letting the compiler allocate the space and initialize the
cell.

Values stored in the cells bound to array and pointer names were the machine addresses,
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measured in bytes, of the corresponding storage area. Therefore, indirection through a pointer
implied no run-time overhead to scale the pointer from word to byte offset. On the other hand,
the machine code for array subscripting and pointer arithmetic now depended on the type of the
array or the pointer: to compute iarray[i] or ipointer+i implied scaling the addend i by
the size of the object referred to.

These semantics represented an easy transition from B, and I experimented with them for
some months. Problems became evident when I tried to extend the type notation, especially to
add structured (record) types. Structures, it seemed, should map in an intuitive way onto memory
in the machine, but in a structure containing an array, there was no good place to stash the pointer
containing the base of the array, nor any convenient way to arrange that it be initialized. For
example, the directory entries of early Unix systems might be described in C as

struct {
int inumber;
char name[14];

};

I wanted the structure not merely to characterize an abstract object but also to describe a collec-
tion of bits that might be read from a directory. Where could the compiler hide the pointer to
name that the semantics demanded? Even if structures were thought of more abstractly, and the
space for pointers could be hidden somehow, how could I handle the technical problem of prop-
erly initializing these pointers when allocating a complicated object, perhaps one that specified
structures containing arrays containing structures to arbitrary depth?

The solution constituted the crucial jump in the evolutionary chain between typeless BCPL
and typed C. It eliminated the materialization of the pointer in storage, and instead caused the
creation of the pointer when the array name is mentioned in an expression. The rule, which sur-
vives in today’s C, is that values of array type are converted, when they appear in expressions,
into pointers to the first of the objects making up the array.

This invention enabled most existing B code to continue to work, despite the underlying
shift in the language’s semantics. The few programs that assigned new values to an array name to
adjust its origin—possible in B and BCPL, meaningless in C—were easily repaired. More impor-
tant, the new language retained a coherent and workable (if unusual) explanation of the semantics
of arrays, while opening the way to a more comprehensive type structure.

The second innovation that most clearly distinguishes C from its predecessors is this fuller
type structure and especially its expression in the syntax of declarations. NB offered the basic
types int and char, together with arrays of them, and pointers to them, but no further ways of
composition. Generalization was required: given an object of any type, it should be possible to
describe a new object that gathers several into an array, yields it from a function, or is a pointer to
it.

For each object of such a composed type, there was already a way to mention the underlying
object: index the array, call the function, use the indirection operator on the pointer. Analogical
reasoning led to a declaration syntax for names mirroring that of the expression syntax in which
the names typically appear. Thus,

int i, *pi, **ppi;

declare an integer, a pointer to an integer, a pointer to a pointer to an integer. The syntax of these
declarations reflects the observation that i, *pi, and **ppi all yield an int type when used in
an expression. Similarly,

int f(), *f(), (*f)();

declare a function returning an integer, a function returning a pointer to an integer, a pointer to a
function returning an integer;

int *api[10], (*pai)[10];

declare an array of pointers to integers, and a pointer to an array of integers. In all these cases the
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declaration of a variable resembles its usage in an expression whose type is the one named at the
head of the declaration.

The scheme of type composition adopted by C owes considerable debt to Algol 68,
although it did not, perhaps, emerge in a form that Algol’s adherents would approve of. The cen-
tral notion I captured from Algol was a type structure based on atomic types (including struc-
tures), composed into arrays, pointers (references), and functions (procedures). Algol 68’s con-
cept of unions and casts also had an influence that appeared later.

After creating the type system, the associated syntax, and the compiler for the new lan-
guage, I felt that it deserved a new name; NB seemed insufficiently distinctive. I decided to fol-
low the single-letter style and called it C, leaving open the question whether the name represented
a progression through the alphabet or through the letters in BCPL.

Neonatal C
Rapid changes continued after the language had been named, for example the introduction

of the && and || operators. In BCPL and B, the evaluation of expressions depends on context:
within if and other conditional statements that compare an expression’s value with zero, these
languages place a special interpretation on the and (&) and or (|) operators. In ordinary con-
texts, they operate bitwise, but in the B statement

if (e1 & e2) ...

the compiler must evaluate e1 and if it is non-zero, evaluate e2, and if it too is non-zero, elabo-
rate the statement dependent on the if. The requirement descends recursively on & and | opera-
tors within e1 and e2. The short-circuit semantics of the Boolean operators in such ‘truth-value’
context seemed desirable, but the overloading of the operators was difficult to explain and use.
At the suggestion of Alan Snyder, I introduced the && and || operators to make the mechanism
more explicit.

Their tardy introduction explains an infelicity of C’s precedence rules. In B one writes

if (a==b & c) ...

to check whether a equals b and c is non-zero; in such a conditional expression it is better that &
have lower precedence than ==. In converting from B to C, one wants to replace & by && in such
a statement; to make the conversion less painful, we decided to keep the precedence of the &
operator the same relative to ==, and merely split the precedence of && slightly from &. Today, it
seems that it would have been preferable to move the relative precedences of & and ==, and
thereby simplify a common C idiom: to test a masked value against another value, one must write

if ((a&mask) == b) ...

where the inner parentheses are required but easily forgotten.

Many other changes occurred around 1972-3, but the most important was the introduction
of the preprocessor, partly at the urging of Alan Snyder [Snyder 74], but also in recognition of the
utility of the the file-inclusion mechanisms available in BCPL and PL/I. Its original version was
exceedingly simple, and provided only included files and simple string replacements: #include
and #define of parameterless macros. Soon thereafter, it was extended, mostly by Mike Lesk
and then by John Reiser, to incorporate macros with arguments and conditional compilation. The
preprocessor was originally considered an optional adjunct to the language itself. Indeed, for
some years, it was not even invoked unless the source program contained a special signal at its
beginning. This attitude persisted, and explains both the incomplete integration of the syntax of
the preprocessor with the rest of the language and the imprecision of its description in early refer-
ence manuals.
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Portability
By early 1973, the essentials of modern C were complete. The language and compiler were

strong enough to permit us to rewrite the Unix kernel for the PDP-11 in C during the summer of
that year. (Thompson had made a brief attempt to produce a system coded in an early version of
C—before structures—in 1972, but gave up the effort.) Also during this period, the compiler was
retargeted to other nearby machines, particularly the Honeywell 635 and IBM 360/370; because
the language could not live in isolation, the prototypes for the modern libraries were developed.
In particular, Lesk wrote a ‘portable I/O package’ [Lesk 72] that was later reworked to become
the C ‘standard I/O’ routines. In 1978 Brian Kernighan and I published The C Programming
Language [Kernighan 78]. Although it did not describe some additions that soon became com-
mon, this book served as the language reference until a formal standard was adopted more than
ten years later. Although we worked closely together on this book, there was a clear division of
labor: Kernighan wrote almost all the expository material, while I was responsible for the
appendix containing the reference manual and the chapter on interfacing with the Unix system.

During 1973-1980, the language grew a bit: the type structure gained unsigned, long, union,
and enumeration types, and structures became nearly first-class objects (lacking only a notation
for literals). Equally important developments appeared in its environment and the accompanying
technology. Writing the Unix kernel in C had given us enough confidence in the language’s use-
fulness and efficiency that we began to recode the system’s utilities and tools as well, and then to
move the most interesting among them to the other platforms. As described in [Johnson 78a], we
discovered that the hardest problems in propagating Unix tools lay not in the interaction of the C
language with new hardware, but in adapting to the existing software of other operating systems.
Thus Steve Johnson began to work on pcc, a C compiler intended to be easy to retarget to new
machines [Johnson 78b], while he, Thompson, and I began to move the Unix system itself to the
Interdata 8/32 computer.

The language changes during this period, especially around 1977, were largely focused on
considerations of portability and type safety, in an effort to cope with the problems we foresaw
and observed in moving a considerable body of code to the new Interdata platform. C at that time
still manifested strong signs of its typeless origins. Pointers, for example, were barely distin-
guished from integral memory indices in early language manuals or extant code; the similarity of
the arithmetic properties of character pointers and unsigned integers made it hard to resist the
temptation to identify them. The unsigned types were added to make unsigned arithmetic
available without confusing it with pointer manipulation. Similarly, the early language condoned
assignments between integers and pointers, but this practice began to be discouraged; a notation
for type conversions (called ‘casts’ from the example of Algol 68) was invented to specify type
conversions more explicitly. Beguiled by the example of PL/I, early C did not tie structure point-
ers firmly to the structures they pointed to, and permitted programmers to write
pointer->member almost without regard to the type of pointer; such an expression was
taken uncritically as a reference to a region of memory designated by the pointer, while the mem-
ber name specified only an offset and a type.

Although the first edition of K&R described most of the rules that brought C’s type struc-
ture to its present form, many programs written in the older, more relaxed style persisted, and so
did compilers that tolerated it. To encourage people to pay more attention to the official language
rules, to detect legal but suspicious constructions, and to help find interface mismatches unde-
tectable with simple mechanisms for separate compilation, Steve Johnson adapted his pcc com-
piler to produce lint [Johnson 79b], which scanned a set of files and remarked on dubious con-
structions.

Growth in Usage
The success of our portability experiment on the Interdata 8/32 soon led to another by Tom

London and John Reiser on the DEC VAX 11/780. This machine became much more popular
than the Interdata, and Unix and the C language began to spread rapidly, both within AT&T and
outside. Although by the middle 1970s Unix was in use by a variety of projects within the Bell
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System as well as a small group of research-oriented industrial, academic, and government orga-
nizations outside our company, its real growth began only after portability had been achieved. Of
particular note were the System III and System V versions of the system from the emerging Com-
puter Systems division of AT&T, based on work by the company’s development and research
groups, and the BSD series of releases by the University of California at Berkeley that derived
from research organizations in Bell Laboratories.

During the 1980s the use of the C language spread widely, and compilers became available
on nearly every machine architecture and operating system; in particular it became popular as a
programming tool for personal computers, both for manufacturers of commercial software for
these machines, and for end-users interesting in programming. At the start of the decade, nearly
every compiler was based on Johnson’s pcc; by 1985 there were many independently-produced
compiler products.

Standardization
By 1982 it was clear that C needed formal standardization. The best approximation to a

standard, the first edition of K&R, no longer described the language in actual use; in particular, it
mentioned neither the void or enum types. While it foreshadowed the newer approach to struc-
tures, only after it was published did the language support assigning them, passing them to and
from functions, and associating the names of members firmly with the structure or union contain-
ing them. Although compilers distributed by AT&T incorporated these changes, and most of the
purveyors of compilers not based on pcc quickly picked up them up, there remained no complete,
authoritative description of the language.

The first edition of K&R was also insufficiently precise on many details of the language,
and it became increasingly impractical to regard pcc as a ‘reference compiler;’ it did not perfectly
embody even the language described by K&R, let alone subsequent extensions. Finally, the
incipient use of C in projects subject to commercial and government contract meant that the
imprimatur of an official standard was important. Thus (at the urging of M. D. McIlroy), ANSI
established the X3J11 committee under the direction of CBEMA in the summer of 1983, with the
goal of producing a C standard. X3J11 produced its report [ANSI 89] at the end of 1989, and
subsequently this standard was accepted by ISO as ISO/IEC 9899-1990.

From the beginning, the X3J11 committee took a cautious, conservative view of language
extensions. Much to my satisfaction, they took seriously their goal: ‘to develop a clear, consis-
tent, and unambiguous Standard for the C programming language which codifies the common,
existing definition of C and which promotes the portability of user programs across C language
environments.’ [ANSI 89] The committee realized that mere promulgation of a standard does not
make the world change.

X3J11 introduced only one genuinely important change to the language itself: it incorpo-
rated the types of formal arguments in the type signature of a function, using syntax borrowed
from C++ [Stroustrup 86]. In the old style, external functions were declared like this:

double sin();

which says only that sin is a function returning a double (that is, double-precision floating-
point) value. In the new style, this better rendered

double sin(double);

to make the argument type explicit and thus encourage better type checking and appropriate con-
version. Even this addition, though it produced a noticeably better language, caused difficulties.
The committee justifiably felt that simply outlawing ‘old-style’ function definitions and declara-
tions was not feasible, yet also agreed that the new forms were better. The inevitable compromise
was as good as it could have been, though the language definition is complicated by permitting
both forms, and writers of portable software must contend with compilers not yet brought up to
standard.

X3J11 also introduced a host of smaller additions and adjustments, for example, the type
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qualifiers const and volatile, and slightly different type promotion rules. Nevertheless, the
standardization process did not change the character of the language. In particular, the C standard
did not attempt to specify formally the language semantics, and so there can be dispute over fine
points; nevertheless, it successfully accounted for changes in usage since the original description,
and is sufficiently precise to base implementations on it.

Thus the core C language escaped nearly unscathed from the standardization process, and
the Standard emerged more as a better, careful codification than a new invention. More important
changes took place in the language’s surroundings: the preprocessor and the library. The prepro-
cessor performs macro substitution, using conventions distinct from the rest of the language. Its
interaction with the compiler had never been well-described, and X3J11 attempted to remedy the
situation. The result is noticeably better than the explanation in the first edition of K&R; besides
being more comprehensive, it provides operations, like token concatenation, previously available
only by accidents of implementation.

X3J11 correctly believed that a full and careful description of a standard C library was as
important as its work on the language itself. The C language itself does not provide for input-
output or any other interaction with the outside world, and thus depends on a set of standard pro-
cedures. At the time of publication of K&R, C was thought of mainly as the system program-
ming language of Unix; although we provided examples of library routines intended to be readily
transportable to other operating systems, underlying support from Unix was implicitly under-
stood. Thus, the X3J11 committee spent much of its time designing and documenting a set of
library routines required to be available in all conforming implementations.

By the rules of the standards process, the current activity of the X3J11 committee is con-
fined to issuing interpretations on the existing standard. However, an informal group originally
convened by Rex Jaeschke as NCEG (Numerical C Extensions Group) has been officially
accepted as subgroup X3J11.1, and they continue to consider extensions to C. As the name
implies, many of these possible extensions are intended to make the language more suitable for
numerical use: for example, multi-dimensional arrays whose bounds are dynamically determined,
incorporation of facilities for dealing with IEEE arithmetic, and making the language more effec-
tive on machines with vector or other advanced architectural features. Not all the possible exten-
sions are specifically numerical; they include a notation for structure literals.

Successors
C and even B have several direct descendants, though they do not rival Pascal in generating

progeny. One side branch developed early. When Steve Johnson visited the University of Water-
loo on sabbatical in 1972, he brought B with him. It became popular on the Honeywell machines
there, and later spawned Eh and Zed (the Canadian answers to ‘what follows B?’). When John-
son returned to Bell Labs in 1973, he was disconcerted to find that the language whose seeds he
brought to Canada had evolved back home; even his own yacc program had been rewritten in C,
by Alan Snyder.

More recent descendants of C proper include Concurrent C [Gehani 89], Objective C [Cox
86], C* [Thinking 90], and especially C++ [Stroustrup 86]. The language is also widely used as
an intermediate representation (essentially, as a portable assembly language) for a wide variety of
compilers, both for direct descendents like C++, and independent languages like Modula 3 [Nel-
son 91] and Eiffel [Meyer 88].

Critique
Two ideas are most characteristic of C among languages of its class: the relationship

between arrays and pointers, and the way in which declaration syntax mimics expression syntax.
They are also among its most frequently criticized features, and often serve as stumbling blocks
to the beginner. In both cases, historical accidents or mistakes have exacerbated their difficulty.
The most important of these has been the tolerance of C compilers to errors in type. As should be
clear from the history above, C evolved from typeless languages. It did not suddenly appear to its
earliest users and developers as an entirely new language with its own rules; instead we
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continually had to adapt existing programs as the language developed, and make allowance for an
existing body of code. (Later, the ANSI X3J11 committee standardizing C would face the same
problem.)

Compilers in 1977, and even well after, did not complain about usages such as assigning
between integers and pointers or using objects of the wrong type to refer to structure members.
Although the language definition presented in the first edition of K&R was reasonably (though
not completely) coherent in its treatment of type rules, that book admitted that existing compilers
didn’t enforce them. Moreover, some rules designed to ease early transitions contributed to later
confusion. For example, the empty square brackets in the function declaration

int f(a) int a[]; { ... }

are a living fossil, a remnant of NB’s way of declaring a pointer; a is, in this special case only,
interpreted in C as a pointer. The notation survived in part for the sake of compatibility, in part
under the rationalization that it would allow programmers to communicate to their readers an
intent to pass f a pointer generated from an array, rather than a reference to a single integer.
Unfortunately, it serves as much to confuse the learner as to alert the reader.

In K&R C, supplying arguments of the proper type to a function call was the responsibility
of the programmer, and the extant compilers did not check for type agreement. The failure of the
original language to include argument types in the type signature of a function was a significant
weakness, indeed the one that required the X3J11 committee’s boldest and most painful innova-
tion to repair. The early design is explained (if not justified) by my avoidance of technological
problems, especially cross-checking between separately-compiled source files, and my incom-
plete assimilation of the implications of moving between an untyped to a typed language. The
lint program, mentioned above, tried to alleviate the problem: among its other functions, lint
checks the consistency and coherency of a whole program by scanning a set of source files, com-
paring the types of function arguments used in calls with those in their definitions.

An accident of syntax contributed to the perceived complexity of the language. The indirec-
tion operator, spelled * in C, is syntactically a unary prefix operator, just as in BCPL and B. This
works well in simple expressions, but in more complex cases, parentheses are required to direct
the parsing. For example, to distinguish indirection through the value returned by a function from
calling a function designated by a pointer, one writes *fp() and (*pf)() respectively. The
style used in expressions carries through to declarations, so the names might be declared

int *fp();
int (*pf)();

In more ornate but still realistic cases, things become worse:

int *(*pfp)();

is a pointer to a function returning a pointer to an integer. There are two effects occurring. Most
important, C has a relatively rich set of ways of describing types (compared, say, with Pascal).
Declarations in languages as expressive as C—Algol 68, for example—describe objects equally
hard to understand, simply because the objects themselves are complex. A second effect owes to
details of the syntax. Declarations in C must be read in an ‘inside-out’ style that many find diffi-
cult to grasp [Anderson 80]. Sethi [Sethi 81] observed that many of the nested declarations and
expressions would become simpler if the indirection operator had been taken as a postfix operator
instead of prefix, but by then it was too late to change.

In spite of its difficulties, I believe that the C’s approach to declarations remains plausible,
and am comfortable with it; it is a useful unifying principle.

The other characteristic feature of C, its treatment of arrays, is more suspect on practical
grounds, though it also has real virtues. Although the relationship between pointers and arrays is
unusual, it can be learned. Moreover, the language shows considerable power to describe impor-
tant concepts, for example, vectors whose length varies at run time, with only a few basic rules
and conventions. In particular, character strings are handled by the same mechanisms as any
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other array, plus the convention that a null character terminates a string. It is interesting to com-
pare C’s approach with that of two nearly contemporaneous languages, Algol 68 and Pascal [Jen-
sen 74]. Arrays in Algol 68 either have fixed bounds, or are ‘flexible:’ considerable mechanism
is required both in the language definition, and in compilers, to accommodate flexible arrays (and
not all compilers fully implement them.) Original Pascal had only fixed-sized arrays and strings,
and this proved confining [Kernighan 81]. Later, this was partially fixed, though the resulting
language is not yet universally available.

C treats strings as arrays of characters conventionally terminated by a marker. Aside from
one special rule about initialization by string literals, the semantics of strings are fully subsumed
by more general rules governing all arrays, and as a result the language is simpler to describe and
to translate than one incorporating the string as a unique data type. Some costs accrue from its
approach: certain string operations are more expensive than in other designs because application
code or a library routine must occasionally search for the end of a string, because few built-in
operations are available, and because the burden of storage management for strings falls more
heavily on the user. Nevertheless, C’s approach to strings works well.

On the other hand, C’s treatment of arrays in general (not just strings) has unfortunate
implications both for optimization and for future extensions. The prevalence of pointers in C pro-
grams, whether those declared explicitly or arising from arrays, means that optimizers must be
cautious, and must use careful dataflow techniques to achieve good results. Sophisticated compil-
ers can understand what most pointers can possibly change, but some important usages remain
difficult to analyze. For example, functions with pointer arguments derived from arrays are hard
to compile into efficient code on vector machines, because it is seldom possible to determine that
one argument pointer does not overlap data also referred to by another argument, or accessible
externally. More fundamentally, the definition of C so specifically describes the semantics of
arrays that changes or extensions treating arrays as more primitive objects, and permitting opera-
tions on them as wholes, become hard to fit into the existing language. Even extensions to permit
the declaration and use of multidimensional arrays whose size is determined dynamically are not
entirely straightforward [MacDonald 89] [Ritchie 90], although they would make it much easier
to write numerical libraries in C. Thus, C covers the most important uses of strings and arrays
arising in practice by a uniform and simple mechanism, but leaves problems for highly efficient
implementations and for extensions.

Many smaller infelicities exist in the language and its description besides those discussed
above, of course. There are also general criticisms to be lodged that transcend detailed points.
Chief among these is that the language and its generally-expected environment provide little help
for writing very large systems. The naming structure provides only two main levels, ‘external’
(visible everywhere) and ‘internal’ (within a single procedure). An intermediate level of visibility
(within a single file of data and procedures) is weakly tied to the language definition. Thus, there
is little direct support for modularization, and project designers are forced to create their own con-
ventions.

Similarly, C itself provides two durations of storage: ‘automatic’ objects that exist while
control resides in or below a procedure, and ‘static,’ existing throughout execution of a program.
Off-stack, dynamically-allocated storage is provided only by a library routine and the burden of
managing it is placed on the programmer: C is hostile to automatic garbage collection.

Whence Success?
C has become successful to an extent far surpassing any early expectations. What qualities

contributed to its widespread use?

Doubtless the success of Unix itself was the most important factor; it made the language
available to hundreds of thousands of people. Conversely, of course, Unix’s use of C and its con-
sequent portability to a wide variety of machines was important in the system’s success. But the
language’s invasion of other environments suggests more fundamental merits.

Despite some aspects mysterious to the beginner and occasionally even to the adept, C
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remains a simple and small language, translatable with simple and small compilers. Its types and
operations are well-grounded in those provided by real machines, and for people used to how
computers work, learning the idioms for generating time- and space-efficient programs is not dif-
ficult. At the same time the language is sufficiently abstracted from machine details that program
portability can be achieved.

Equally important, C and its central library support always remained in touch with a real
environment. It was not designed in isolation to prove a point, or to serve as an example, but as a
tool to write programs that did useful things; it was always meant to interact with a larger operat-
ing system, and was regarded as a tool to build larger tools. A parsimonious, pragmatic approach
influenced the things that went into C: it covers the essential needs of many programmers, but
does not try to supply too much.

Finally, despite the changes that it has undergone since its first published description, which
was admittedly informal and incomplete, the actual C language as seen by millions of users using
many different compilers has remained remarkably stable and unified compared to those of simi-
larly widespread currency, for example Pascal and Fortran. There are differing dialects of C—
most noticeably, those described by the older K&R and the newer Standard C—but on the whole,
C has remained freer of proprietary extensions than other languages. Perhaps the most significant
extensions are the ‘far’ and ‘near’ pointer qualifications intended to deal with peculiarities of
some Intel processors. Although C was not originally designed with portability as a prime goal, it
succeeded in expressing programs, even including operating systems, on machines ranging from
the smallest personal computers through the mightiest supercomputers.

C is quirky, flawed, and an enormous success. While accidents of history surely helped, it
evidently satisfied a need for a system implementation language efficient enough to displace
assembly language, yet sufficiently abstract and fluent to describe algorithms and interactions in a
wide variety of environments.
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